The total synthesis of (-)-cyanthiwigin F by means of double catalytic enantioselective alkylation

> Hong Ren 07-19-08

Mohr, J. T.; Ebner, D. C.; Harned, A. M.; Stoltz, B. M. Org. Biomol. Chem. 2007, 5, 3571-3576

Oxidative kinetic resolution of secondary alcohol

Nielson, R. J.; Keith, J. M.; Stoltz, B. M. Goddard, W. A. J. Am, Chem. Soc. 2004, 126, 7967, 7974

Stereoablative enantioconvergent allylation

Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew. Chem. Int. Ed. 2005, 44, 6924-6927

Stereoablation

2005

"The conversion of a chiral molecule to an achiral molecule"

2007

"Reactions where an existing stereocenter in a molecule is destroyed, but the intermediate molecule need not be wholly achiral"

Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. *Angew. Chem. Int. Ed.* **2005**, *44*, 6924-6927 Mohr, J. T.; Ebner, D. C.; Harned, A. M.; Stoltz, B. M. *Org. Biomol. Chem.* **2007**, *5*, 3571-3576

Now, It is the story of Cyanthiwigin F

Cyanthiwigin F

Cytotoxic activity against human primary tumor cells

Antimicrobial activity Antineoplastic action Stimulation of nerve growth factor K-opioid receptor agonism

But, only 2 of the 30 Cyanthiwigin molecules have been synthesized so far.

Retrosynthetic analysis

Stage 1--- Enantioselective Tsuji Allylation

Nielson, R. J.; Keith, J. M.; Stoltz, B. M. Goddard, W. A. J. Am, Chem. Soc. 2004, 126, 7967, 7974

Stage 1--- Enantioselective Tsuji Allylation

Ligand	Time (h)	% yield ^a	% ee
(<i>R, R</i>)-Trost ligand	5	92	64
(R)-BINAP	5	76	2
(R, R)-Me-DUPHOS	5	66	0
(<i>R, R</i>)-DIOP	2	59	2
(R) -MOP	3	47	13
(R)-QUINAP	2	97	61
(R)-Ph-PHOX	2	95	65
(R)-i-Pr-PHOX	5	94	63
(S)-Bn-PHOX	2	95	83
(s)-t-Bu-PHOX	2	95	88

t-Bu

PPh₂

Nielson, R. J.; Keith, J. M.; Stoltz, B. M. Goddard, W. A. J. Am, Chem. Soc. 2004, 126, 7967, 7974

Stage 2--- catalytic stereoablative enantioconvergent allylation

Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew. Chem. Int. Ed. 2005, 44, 6924-6927

Stage 3---Double allylation cascade generating two all-carbon quaternary stereocenters

Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew. Chem. Int. Ed. 2005, 44, 6924-6927

Stage 4---Cascade catalytic stereoablative enantioconvergent allylation

Forward Synthesis

Stereochemical analysis

Forward Synthesis

Forward Synthesis

Credits

- Introduction of two chiral centers in one pot with excellent ee
- Tandem ring-closing metathesis and crossmetathesis
- No protections and deprotections involved